Skip to main content

Chemical In-Space Propulsion

Overview

L3Harris builds monopropellant and bipropellant propulsion systems for applications including spacecraft maneuvering, orbit raising, deep space navigation, planetary landing, and rocket upper stage propulsion. These systems use storable propellants that remain stable in liquid form without the need for active cooling.

Key Features

Bipropellant Engines

Enabling In-Space Operations and Exploration

L3Harris has delivered more than 2,500 bipropellant engines ranging in thrust level from 2.5 pounds to 40,000 pounds. Bipropellant engines feed hydrazine or monomethylhydrazine (MMH) propellants and nitrogen tetroxide (NTO) oxidizer into a combustion chamber, where they ignite on contact to generate thrust. 

Bipropellant thrusters typically are used for in-space maneuvering for large vehicles including the crew-carrying Orion and Starliner spacecraft, as well as International Space Station (ISS) servicing vehicles. The largest versions have served as the upper stage engines for launch vehicles including the Delta II and Titan III, the Apollo Service Modules, as well as for maneuvering the Space Shuttles. L3Harris' 100-pound-thrust R-4D, originally developed for the Apollo missions ā€“ it played a key role in the Apollo 13 rescue ā€“ has evolved into the worldā€™s most reliable apogee insertion engine. R-4D engine variants have flown over 390 apogee-insertion missions for geostationary-orbiting satellites, with a 100 percent success rate.

L3Harris has a new family of lightweight and affordable bi-propellant engines in the 5 pound and 100 pound thrust levels for deep space missions and fast-acting maneuvers such as landing or proximity operations. The In-Space Engines (ISE) use monomethylhydrazine (MMH) propellants and mixed oxides of nitrogen at 25 % nitric oxide (MON25), a high performance oxidizer, which provides system level benefits due to lower freezing temperatures and higher densities. Cost and schedule affordability is built in for these two new engines using the latest advancements in additive manufacturing.

 

Monopropellant Engines

Enabling Solar System Exploration

L3Harris has delivered more than 19,000 hydrazine-fueled monopropellant engines providing thrust levels ranging from 0.02 pounds to 700 pounds. Monopropellant engines generate thrust by flowing liquid hydrazine into a catalytic decomposition chamber where the propellant undergoes a highly energetic decomposition, producing gases that are then accelerated through a nozzle.

L3Harris monopropellant thrusters have been used on missions to explore every planet in the solar system, typically for planetary transit course corrections, orbital capture/insertion and landing. The Sky Crane that lowered NASAā€™s Curiosity and Perseverance Rovers to the Martian surface used L3Harris monopropellant thrusters to hover during the process and then to whisk the carrier spacecraft away from the landing site. Monopropellant engines also are used for precision pointing, and attitude and spin control on various satellites and spacecraft, including ISS crew and servicing spacecraft. On launch vehicle upper stages, monopropellant thrusters are used for pitch, roll and yaw control, as well as for engine propellant settling burns.

Resources

  • Bipropellant Rocket Engines Data Sheet

    Bipropellant Rocket Engines Data Sheet

Latest News

Employees maneuver a piece of hardware

Press release | 08. 13. 2024

L3Harris Marks Artemis III and IV Jettison Solid Rocket Motor Milestones

L3Harris Technologies has achieved a significant milestone by successfully casting the jettison motor, a key component of the Launch Abort System (LAS) for NASAā€™s Orion spacecraft, for Artemis III and IV.

Employees maneuver a piece of hardware

Press release | 08. 13. 2024

L3Harris Marks Artemis III and IV Jettison Solid Rocket Motor Milestones

Rocket motor test fires in a forest

Editorial | 08. 05. 2024

The L3Harris Difference - Delivering on Aerojet Rocketdyne

cyber computer room

Press release | 07. 29. 2024

L3Harris Highlights Performance Progress One Year After Acquiring Aerojet Rocketdyne

Core Stage for Artemis II Rocket Moved to Pegasus Barge for Departure to Kennedy Space Center. Image Credit: NASA

Editorial | 07. 16. 2024

Artemis II SLS Core Stage Heading to NASAā€™s Kennedy Space Center

RS-25 Propulsion System

Press release | 07. 08. 2024

RS-25 Engines are Ready for Artemis IV

Related Domains & Industries

Solutions that solve our customers' toughest challenges.
view all capabilities

Career Inquiries | Prospective Supplier Form | Supplier Inquiries | Report a Website Problem

For sales inquiries please fill out the form below: